<u>Geologic History</u> <u>Relative Time and Absolute Time</u>

Uses Law of Superposition

Put these in order <u>relative</u> to one another

Law of Superposition:

youngest

The oldest rock layers are on the bottom.

Photo by Edward J. Tarbuck Copyright © 2002 by Tasa Graphic Arts, Inc.

Using this principle, label the strata below from oldest to youngest.

D	
c	
₽ ₽ ₽	

ROCK CORRELATION

Original Horizontality: All layers are deposited

- horizontally at first.
- **Uniformitarianism: Events that happened in the past**
- happen the same way now.

Cross Cutting: Faults, cracks, lava, that cuts through a rock layer is younger then the rock layer.

Sequence of events:

F)

Intrusion:

How do you know?

F cuts through S S must have been there first (it's older)

<u>4 steps produce an unconformity</u>

- 1. Uplift area of crust uplifted above sea level
- 2. Erosion some time after uplift
- 3. Submergence (subsidence) below sea level
- Deposition new sediments deposited on top of the buried eroded surface

Observe an animation showing the formation of an unconformity.

 http://www.classzone.com/books/earth_scien ce/terc/content/visualizations/es2902/es2902
page01.cfm?chapter_no=29

Volcanic Ash- A good Geologic Time Marker. -Very wide spread

Carlisle Island

Chuginadak Island

Overturned - It is possible for older rock to be found on top of younger rocks due to extreme crustal movement.

Eurypterus NY State Fossil Silurian index

fossil

Complete packet pages 5 – 9 Relative Dating Lab

Correlations

The process of matching rocks or geologic events occurring at different locations of the same age is called **Correlation**

There are three techniques used to make correlations.

1) Correlation by matching similar rock, fossils and volcanic ash.

Outcrop A Outcrop B

Which statement best explains why rock layer 3 is missing from outcrop *B*?

(1) A fault exists between outcrops A and B.

(2) Erosion created an unconformity between rock layers 2 and 4 in outcrop *B*.

(3) A volcanic eruption destroyed rock layer 3 in outcrop *B*.

Correlation – Examples

Section 1

With an unconformity

Correlation – Examples

With a change in thickness

Correlation – Let's practice

Correlation of Rock Columns

Column A

29

Column B

Glacial Till Brown Siltstone Conglomerate Green Shale Grey Sandstone Tan Limestone

Mastodont remains

Column C

Rock Formations

Complete Packet page 10-11

Half life · Amount of time it takes for an isotope to decay and lose half its mass.

Decay Product What the isotope decays into

ESRT Front cover

Radioactive Isotope	Decay product	Half – life (years)
Carbon · 14	Nitrogen ¹⁴	5,700
Potassium · 40		
Uranium – 238		
Rubidium · 87		

Absolute Age

What can be done to change the half-life of a radioactive isotope? Why is this important?

NOTHING!

it is reliable to calculate age

Radioactive Dating:

A radioactive isotope decays at a set rate. THE SPEED OF ITS DECAY DOES NOT CHANGE

After each half life, 1/2 of the material has decayed into the decay product

Radioactive	Decay	Data
-------------	-------	------

RADIOACTIVE ISOTOPE	DISINTEGRATION	HALF-LIFE (years)
Carbon-14	$C^{14} \rightarrow N^{14}$	5.7 × 10 ³
Potassium-40	K ⁴⁰ Ar ⁴⁰ Ca ⁴⁰	1.3 × 10 ⁹
Uranium-238	U ²³⁸ → Pb ²⁰⁶	4.5 × 10 ⁹
Rubidium-87	Rb ⁸⁷ → Sr ⁸⁷	4.9 × 10 ¹⁰

Radioactive Decay Data			
RADIOACTIVE ISOTOPE	DISINTEGRATION	HALF-LIFE (years)	
Carbon-14	$C^{14} \rightarrow N^{14}$	5.7 × 10 ³	5,700 years
Potassium-40	K ⁴⁰ Ca ⁴⁰	1.3 × 10 ⁹	1,300,000,000 years
Uranium-238	$U^{238} \rightarrow Pb^{206}$	4.5 × 10 ⁹	4,500,000,000 years
Rubidium-87	Rb ⁸⁷ → Sr ⁸⁷	4.9 × 10 ¹⁰	490,000,000,000 vears
			-youro

Radioactive dating gives geologists YEARS of age.

Use Carbon-14 for recent events only!!

#half lives	Isotope	= Decay
0	= 100%	= 0%
1	= 50%	= 50%
2	= 25%	= 75%
3	= 12.5%	= 87.5%
4	= 6.25%	= 93.75%

As the half-lifes increase the amount of isotope decreases and the amount of Decay Produce increases...

Draw the generic graph for the half-life of a radioactive isotope.

Lets answer some questions...

What is the half life of uranium-238?

4.5 x 10⁹

4,500,000,000

4.5 billion years choice (c)

If there is a 100g sample of C¹⁴, how many grams of C¹⁴ would remain after three half-lives? How long would this take? Show all work.

3 half-lives x (5.7 x 10³) =1.71 x 10⁴ = 17,100 years Complete packet pages 12 – 14 Absolute Dating Lab

Calculating Half-Life Problems

Block

How to Calculate Half-Life Problems:

THE PROBLEM:

Name

An isotope of cesium (cesium-137) has a half-life of 30 years. If 1.0 g of cesium-137 disintegrates over a period of 90 years, how many grams of cesium-137 would remain?

THE SOLUTION:

9. How many times you added a half-life in the **TIME COLUMN** equals how many half-lives have occurred.

10. The last amount of mass at the bottom of the **MASS COLUMN** equals how much mass is left after radioactive decay has occurred.

Geologic Time Scale

Life on Earth:- The changing of an organism from simple to complex.

- Mutations may produce altered traits

 <u>Natural selection</u> – where an organism has a specific trait that aides in their survival

- Changes occur very slowly over a long period of time

Geologic Time Scale

ESRT pages 8 & 9

- Describes the events that have taken place in the history of Earth.

Geologic Time Scale

Earth is about 4 billion years old. The time periods are determined by events on earth.

Divisions of Time

Which fossil might be found in Devonian rock layers?

Complete packet pages 15 Geo-Time Line Lab

Do landscape Regions with the packet (no power point)