Geologic History

Relative Time and Absolute Time

Uses Law of Superposition

Put these in order relative to one another

Gives a date or a time of an event

Uses Radioactive
 Dating

A.

B.

Using this principle, label the strata below from oldest to youngest.

ROCK CORRELATION

Original Horizontality: All layers are deposited

horizontally at first.
Uniformitarianism: Events that happened in the past
happen the same way now.

 \section*{Cross Cutting: Faults, cracks, lava, that cuts through a
 \section*{Cross Cutting: Faults, cracks, lava, that cuts through a rock layer is younger then the rock layer.} rock layer is younger then the rock layer.}

Sequence of events:
A) \qquad
B) \qquad
C) \qquad
D) \qquad

E) \qquad
F)

Intrusion:

Contact Metamorphism

- Younger than the rock layer it goes through (tick marks are younger)

Extrusion:

- Older than rock layers above it.

- Tick Marks= Contact Metamorphism.

Folds, faults, iliting - Are all younger than the rocks they are in.

Which is older:

How do you know?

F cuts throughs
Smust have been there first [it's older]

Unconfomilty' - Buried erosional surface, representing a gap in geologic time.

- Caused by extensive erosion.

4 steps produce an unconformity

1. Uplift - area of crust uplifted above sea level
2. Erosion - some time after uplift
3. Submergence (subsidence) below sea level
4. Deposition - new sediments deposited on top of the buried eroded surface

Observe an animation showing the formation of an unconformity.

- http://www.classzone.com/books/earth_scien ce/terc/content/visualizations/es2902/es2902 page01.cfm?chapter_no=29

Volcanic Ash- A good Geologic Time Marker. -Very wide spread

Carlisle Island

Overturned - It is possible for older rock to be found on top of younger rocks due to extreme crustal movement.

Index fossil Geologic Time Marker.

(1) Lived over a large geographic area (large horizontal distribution)

2 things that make a good index fossil
2) Lived for a short period of time (small vertical distribution)

Eurypterus

NY State Fossil

Silurian index
fossil

ad A DuDuha DuAban a an od doanna (1)

 .\%.0.\%\%\%\%\%\%\%\%\%\%\%\%\% No contact metamorphism

Complete packet pages 5-9
Relative Dating Lab

Correlations

The process of matching rocks or geologic events occurring at different locations of the same age is called Correlation

There are three techniques used to make correlations.

1) Correlation by matching similar rock, fossils and volcanic ash.

Which statement best explains why rock layer 3 is missing from outcrop B?
(1) A fault exists between outcrops A and B.
(2) Erosion created an unconformity between rock layers 2 and 4 in outcrop B.
(3) A volcanic eruption destroyed rock layer 3 in outcrop B.

Correlation - Examples

Section 1

Section 2

Correlation - Examples

Unconformity

With an unconformity

Correlation - Examples

With a change in thickness

Correlation - Let's practice

WEST
A

EAST
C

Correlation of Rock Columns

	Green Shale Tan Limestone
$\therefore \because \because$	Red Sandstone
	Grey Siltstone
	Brown Sandstone
	Black Shale
	Grey Limestone

Column B

Column C

Rock Formations

Complete Packet page 10-11

ABSOLUTE TIME:

RADIOACTIVE DATING

Unstable parent elements

Absolute Age

Decay to
stable
daughter
element.

Nothing effects decay rate.

Haff life. Amount of time it takes for an isotope to decay and lose half its mass.

Decay Product
 What the isotope decays into

ESRT Front cover

Radioactive Isotope	Decay product	Half-life (years)
Carbon $\cdot 14$	Nitrogen ${ }^{14}$	5,700
Potassium $\cdot 40$		
Uranium -238		
Rubidium $\cdot 87$		

Daughter nucleus-

Atomic number: 2 fewer

Atomic mass: 4 fewer

Daughter

 nucleus-Atomic number: 1 more

Atomic mass: no change

Daughter nucleus-

Atomic number: 1 fewer

Atomic mass: no change

Absolute Age

What can be done to change the half-life of a radioactive isotope? Why is this important?
NOTHING!
it is reliable to calculate age

Radioactive Dating:

A radioactive isotope decays at a set rate. THE SPEED OF ITS DECAY DOES NOT CHANGE

After each half life, $1 / 2$ of the material has decayed into the decay product

Radioactive Decay Data		
RADIOACTIVE ISOTOPE	disintegration	HALF-LIFE (years)
Carbon-14	$\mathrm{C}^{14} \rightarrow \mathrm{~N}^{14}$	5.7×10^{3}
Potassium-40		1.3×10^{9}
Uranium-238	$\mathrm{U}^{238} \rightarrow \mathrm{~Pb}^{206}$	4.5×10^{9}
Rubidium-87	$\mathrm{Rb}^{87} \mathrm{Sr}^{87}$	4.9×10^{10}

Radioactive Decay Data

RADIOACTIVE ISOTOPE	disintegration	HALF-LIFE (years)	
Carbon-14	$\mathrm{C}^{14} \rightarrow \mathrm{~N}^{14}$	5.7×10^{3}	5,700 years
Potassium-40	$\mathrm{K}^{40} \xrightarrow{\text { a } \mathrm{Ca}^{40} \mathrm{Ca}^{40}}$	1.3×10^{9}	1,300,000,000 years
Uranium-238	$\mathrm{U}^{238} \mathrm{~Pb}^{206}$	4.5×10^{9}	4,500,000,000 years
Rubidium-87	$\mathrm{Rb}^{87} \mathrm{Sr}^{87}$	4.9×10^{10}	$\begin{aligned} & 490,000,000,000 \\ & \text { years } \end{aligned}$

Radioactive dating gives geologists YEARS of age.

Use Carbon-14 for recent events only!!

$$
\begin{array}{cll}
\text { \#half lives } & \text { Isotope } & =\text { Decay } \\
0 & =100 \% & =0 \% \\
1 & =50 \% & =50 \% \\
2 & =25 \% & =75 \% \\
3 & =12.5 \% & =87.5 \% \\
4 & =6.25 \% & =93.75 \%
\end{array}
$$

As the half-lifes increase the amount of isotope decreases and the amount of Decay Produce increases...

Draw the generic graph for the half-life of a radioactive isotope.

Lets answer some questions...

What is the half life of uranium-238?

$$
4.5 \times 10^{9}
$$

4,500,000,000
4.5 billion years choice (c)

If there is a 100 g sample of C^{14}, how many grams of C^{14} would remain after three half-lives? How long would this take? Show all work.

$$
\begin{aligned}
3 \text { half-lives } \times\left(5.7 \times 10^{3}\right) & =1.71 \times 10^{4} \\
= & 17,100 \text { years }
\end{aligned}
$$

Complete packet pages 12 - 14
Absolute Dating Lab

Calculating Half-Life Problems

Name \qquad Block \qquad

How to Calculate Half-Life Problems:

THE PROBLEM:

An isotope of cesium (cesium-137) has a half-life of 30 years. If 1.0 g of cesium-137 disintegrates over a period of 90 years, how many grams of cesium-137 would remain?

THE SOLUTION:

1. Draw a T-Table:

2. Label the left side with the unit of time mentioned in the problem.

3. Label the right side with the mass mentioned in the problem.

4. Begin by always writing
a zero in the TIME COLUMN.

5. Then, in the TIME COLUMN add one half-life at a time till you reach the total time given in the problem.

| TIME (yrs) | MASS (g) |
| :---: | :---: | :---: |
| 0 | |
| 30 | |
| 60 | |
| 90 | |

6. In the MASS COLUMN, always start with the mass originally given in the problem.

TIME (yrs)	MASS (g)
0	1.0
30	
60	
90	

7. Then keep dividing the number in the MASS COLUMN by 2 for each number of half-lives on the left column.

8. The rules are:
a. Add half-lives on the left.
b. Divide by 2 on the right.

9. How many times you added a half-life in the TIME COLUMN equals how many half-lives have occurred
10. The last amount of mass at the bottom of the MASS COLUMN equals how much mass is left after radioactive decay has occurred.

Geologic Time Scale

Life on Earth:- The changing of an organism from simple to complex.

- Mutations may produce altered traits
- Natural selection - where an organism has a specific trait that aides in their survival
- Changes occur very slowly over a long period of time

Gechagic Tire Scalk
ESRT pages 8 \& 9

- Describes the events that have taken place in the history of Earth.

Geologic Time Scale
Earth is about 4 billion years old.
The time periods are determined by events on earth.

Divisions of Time

Eons

Longest Time Period

Eras

Periods

Epochs
Shortest Time Period

Which fossil might be found in Devonian rock layers?

Mastodont	Elliptocephala	Phecops	
(1)	(2)	(3)	(4)

GEOLOGIC HISTORY OF NEW YORIK STATE

Generalized Bedrock Geology of New York State

TACONIC SEQUENCE sandstones，shales，and slates
Slightly to intensely metamorpho
Slightly to intensely metamorphosed rocks of CAMBRIAN through MIDDLE ORDOVICIAN ages．
MIDDLE PROTEROZOIC gneisses，quartzites，and marbles Lines are generalized structure trends．

Intensely Meiamorphosed Rocks

GEOLOGIC HISTORY

? OF NEW YORK STATE

GEOLOGIC HISTORY OF NEW YORIK STATE

Complete packet pages 15
Geo-Time Line Lab

Do landscape Regions with the packet (no power point)

