Rocks and Minerals

Every American Born Will Need...

3.7 million pounds of minerals, metals, and fuels in their lifetime

Minerals

A. Minerals are classified according to their properties.

These are

Luster
Hardness
Cleavage
Color
Composition

Physical Properties:

1) Color · - Easiest to recognize

Test:

The worst property for mineral ID because,

Example:quartz ·Comes in many differentcolors

calcite and halite - Can be transparent

along with many others

2) Streak ·

Different samples of Quartz

Physical Properties:

1) Color · *The worst property for mineral ID*

- Easiest to recognize

Example: quartz · Comes in many different colors

calcite and halite - Can be transparent along with many others

2) Streak - The color of a minerals powder

Test: Rub a mineral across a piece of ceramic tile

Metallic

Non-Metallic

Quartz composition = SiO₂

B. Minerals are grouped according to their **Physical and Chemical properties**

- The elements combine to and oxygen silicon form tetrahedral units.
- Together, the mass of these two elements are most abundant in the Earth's crust.
- <u>Silicates</u> · any mineral composed of silicon and oxygen

Mineral		Idealized Formula	Cleavage	Silicate Structure
Olivine		(Mg, Fe) ₂ SiO ₄	None	Single tetrahedron
Pyroxene group (Augite)		(Mg,Fe)SiO ₃	Two planes at right angles	Single chains
Amphibole group (Hornblende)		Ca ₂ (Fe,Mg) ₅ Si ₈ O ₂₂ (OH) ₂	Two planes at 60° and 120°	Double chains
Micas	Biotite	K(Mg,Fe) ₃ AlSi ₃ O ₁₀ (OH) ₂	One plane	Sheets
	Muscovite	KAl ₂ (AISi ₃ O ₁₀)(OH) ₂		
Feld- spars	Orthoclase	KAISi ₃ O ₈	Two planes at 90°	Three-dimensional networks
	Plagioclase	(Ca,Na)AlSi ₃ O ₈		
Quartz		SiO ₂	None	

Copyright © 2002 by Tasa Graphic Arts, Inc. 2. The physical properties of minerals depend upon the

Internal arrangement of atoms

Complete pages 6-7 in notes packet Watch You Tube Videos 3.1, ESRT 16

How are rocks identified?

By their...

1) Composition

2) Texture

Texture is not how the rock feels but the size, shape and arrangement of the materials the rock is composed of.

Sedimentary Rocks

Key Concept #1: Most sedimentary rocks are made of pieces (clasts) of other rocks.

Key Concept #2: Name two processes that form sedimentary rocks.

a.

b.

large rounded pebbles (clasts)

sandstone matrix

Sedimentary Rocks

Key Concept #1: Most sedimentary rocks are made of pieces (clasts) of other rocks.

Key Concept #2: Name two processes that form sedimentary rocks.

a.

b.

Cementation and Compactions of rock sediments

Chemical precipitates from a solution

Key Concept #3: In what type of environment are most sedimentary rocks formed?

- The remains of once living organisms

http://www.eram.k12.ny.us/education /sctemp/47599442ab8e5070f121df9c d8bba399/1255982708/sedimentary.s wf

Animated sedimentary rocks esrt

Scheme for Sedimentary Rock Identification

INORGANIC LAND-DERIVED SEDIMENTARY ROCKS									
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL				
Clastic (fragmental)	Pebbles, cobbles, and/or boulders		Rounded fragments	Conglomerate	00000000000000000000000000000000000000				
	embedded in sand, silt, and/or clay	Mostly quartz, foldeper and —	Angular fragments	Breccia	Р. 43 45 45				
	Sand (0.2 to 0.006 cm)	clay minerals; may contain	Fine to coarse	Sandstone	-				
	Silt (0.006 to 0.0004 cm)	fragments of other rocks	Very fine grain	Siltstone					
	Clay (less than 0.0004 cm)	and minerals	Compact; may split easily	Shale					
	CHEMICALLY AN	D/OR ORGANICALI	Y FORMED SEDIMENT	ARY ROCKS					
TEXTURE	GRAIN SIZE	COMPOSITION	COMMENTS	ROCK NAME	MAP SYMBOL				
Crystalline	Varied	Halite	Crystals from chemical precipitates and evaporites	Rock Salt					
	Varied	Gypsum		Rock Gypsum					
	Varied	Dolomite	and evaporites	Dolostone	E E				
Bioclastic	Microscopic to coarse	Calcite	Cemented shell fragments or precipitates of biologic origin	Limestone					
	Varied	Carbon	From plant remains	Coal					

Complete pages 8-10 in notes packet Watch You Tube Videos 3.2, ESRT 7a, ESRT 6a

Igneous Rocks

Forms from the solidification of molten material (magma)

Earth Science Reference Tables, page 6								
Intrusive	Environment of Formation	Extrusive						
Plutonic (inside the earth) Also known as								
Slow to very sl	••• Rate of cooling							
Large	Size of crystals							
Coarse to very coarse Texture								

Intrusive Igneous

Big crystals

Earth Science Reference Tables, page 6							
Intrusive	Environment of Form	ation Extrusive					
Plutonic (inside the ea	rth)Also known as	Volcanic (on the surface)					
Slow to very slow	Rate of cooling	Fast to very fast					
Large	Size of crystals	Small to non-crystalline					
Coarse to very coa	rse Texture	Glassy to fine					

Extrusive Igneous Rocks

Small crystals, or glassy texture

Another identification clue for Igneous Rocks

Vesicular Texture (it has gas pockets)

Complete pages 11-13 in notes packet Watch You Tube Videos 3.3, ESRT 6b

Metamorphic Rocks

Key Concept #1:

How are metamorphic rocks formed?

By extreme heat and/or pressure

Melting **DOES NOT** occur.

If melting does occur, it is classified as a(n) **Igneous** rock.

Key Concept #3: What is the difference between Regional and Contact Metamorphism?

REGIONAL:

- Large areas of rock that undergoes intense heat and pressure.

- Mountain Building Events

CONTACT:

- Molten rock comes in contact with surrounding rocks and heat alters it.

* Does not melt the rock

Key Identifying Features of Metamorphic Rocks

a. Foliation:

Minerals are aligned

Banding, type of foliation with bands of white and black minerals

b. Distorted Structure:

Key Identifying Features of Metamorphic Rocks

a. Foliation:

Minerals are aligned

Banding, type of foliation with bands of white and black minerals

b. Distorted Structure:

Folded Layers

East Wall

North Anticline 146

The Whaleback Anticline

South Wall

FOR THE

c. Key Identifier Minerals:

Scheme for Metamorphic Rock Identification

TEXTURE		GRAIN SIZE	COMPOSITION		N	TYPE OF METAMORPHISM	COMMENTS		ROCK NAME	MAP SYMBOL			
Q	MINERAL ALIGNMENT	Fine						_	Regional	Low-gi metam	ade orphism of shale	Slate	
FOLIATE		Fine to medium	MICA			PHIBOLE			(Heat and pressure increase	Foliatic micros	n surfaces shiny from copic mica crystals	Phyllite	* * * * * * * *
				UARTZ	LDSPAR		ARNET	INE	with depth)	Platy n metam feldspa	nica crystals visible from orphism of clay or ars	Schist	
	BAND- ING	Medium to coarse		0	E	AM	Ū Ū	PYROXE		High-g some r segreg into ba	rade metamorphism; nica changed to feldspar; ated by mineral type nds	Gneiss	
		Fine	Variable			е		Contact (Heat)	Variou heat fr magma	s rocks changed by om nearby a/lava	Hornfels		
	LIATED	Fine to coarse	Quartz			Z		— Denianal —	Metan sands	norphism of quartz tone	Quartzite		
	NONFO		С	Calcite and/or dolomite		or	or Or	Metan limest	norphism of one or dolostone	Marble			
		Coarse	Various minerals in particles and matrix		als		Pebbl or stre	es may be distorted tched	Metaconglomerate				
Complete page 15 in notes packet Watch You Tube Videos 3.4, ESRT 7b