Earths Dynamic Crust and Interior (Tectonics)

- Earths Interior -Small Scale Crustal Changes - Earthquakes and Igneous Activity Including Volcanoes
- Plate Tectonics

Small Scale Crustal Changes

Earths Crust in constantly undergoing change!

Lithosphere : The layer of rock that forms the outer shell at the top of the Earth's interior

<u>Crust</u>: The upper portion of the lithosphere

Evidence for past movement of earths crust is based on the concept of *Original Horizontality*

<u>Original Horizontality</u>: assumes that most rock layers (often called strata) form in horizontal layers.

Therefore strata found in positions other then horizontal have been deformed by crustal movement.

Tilted Strata

Deformed Rock Layers

Folded
Uplifted
Faulted

Folded Rock Layers : are bent or curved

<u>Uplifted Rock Layers</u> : indicate that land has been raised up or lifted to its present location

Example are fossils on top of Mount Everest

<u>Faulted Rock Layers</u>: are displaced or offset along a crack called a fault.

Earths Interior

Lithosphere	- The solid most outer part of Earth
Crust	- The rocky solid shell that "floats"
	on the asthenosphere
Asthenosphere	- Plastic mantle (made of molten
* Convection	current found in Asthenosphere

Proper	ties of Earth's Interior
Lithosphere	- The solid most outer part of Earth
Crust	- The rocky solid shell that "floats"
	on the asthenosphere
Asthenosphere	- Plastic mantle (made of molten
* Convection	current found in Asthenosphere
Stiffer Mantle	- Rocky part of mantle, takes up the
	majority of it

Sliding Plate over the Asthenosphere

Properties of Earth's Interior		
Lithosphere	- The solid most outer part of Earth	
Crust	- The rocky solid shell that "floats"	
	on the asthenosphere	
	-1	
Asthenosphere	- Plastic mantle (made of molten	
	material)	
* Convection	current found in Asthenosphere	
Stiffer Mantle	- Rocky part of mantle, takes up the	
	majority of it	
Outer Core	- Liquid Metal	
Inner Core	- Solid Nickel and Iron	

Copyright © 2002 by Tasa Graphic Arts, Inc.

How do we know what is down there?

The deepest mine in the world is only 3.3 km deep, and nobody has ever been able to drill down further than 15 km

The suction above the hole resulted in several helicopter crushes, so all flight above the hole now is prohibited

Earth's interior Layers of earth inferred by earthquake waves

ESRT page **10**

Copyright © 2002 by Tasa Graphic Arts, Inc.

Earth's Interior

Reference Table pg 10

Inferred Properties of Earth's Interior

Complete page 4 and 5 in note packet

Earthquakes

1. What is an earthquake? Shaking of the Earths crust caused by a

release of energy

2. Possible causes? Interaction between lithospheric plates

Building and bridge collapses, fires, water shortage

6. Most earthquakes and volcanoes occur at or near **Plate Boundaries**

U

Copyright © 2002 by Tasa Graphic Arts, Inc.

Two Main Types of Earthquake Waves

S-Waves Shear / Secondary Waves

A. P wave

B. S wave

Copyright © 2002 by Tasa Graphic Arts, Inc.

D. Surface wave
Measuring an Earthquake

Richter scale - Measures an earthquakes magnitude

- Uses seismograms
- Each successive number is 10x greater

then the previous

	Richter	Increase in
	number	Magnitude
	1	1
	2	10
	3	100
	4	1,000
	5	10,000
	6	100,000
	7	1,000,000
	8	10,000,000
	9	100,000,000

Mercalli Scale - Measures an earthquakes intensity

- Based on reports from people who experienced the event

* It is subjective

Earthquake Magnitude Scale

Magnitude 6.7

Magnitude 6.9

Magnitude 6.9

Magnitude 7.4

Magnitude 8.5

Determining the arrival time differences between P-waves and S-waves using the chart:

1. Find the distance on the bottom of the chart

- 2. Place a piece of scrap paper vertically (up and down) for that distance
- 3. Mark the scrap paper where the S-wave and P-wave touch it
- 4. Move the scrap paper to the left of the chart. Place one mark at zero and read the time using the mark above it.

Complete bottom of page 7 in notes packet

Determining distance of an earthquake by using differences in P-wave and S-wave arrival times.

- 1 Place a piece of scrap paper on the left side of the chart
- 2. Mark the zero and the arrival time difference on the scrap paper
- Keep the scrap paper vertical and move it to the right until the top mark is touching the S-wave line and the zero mark is touching the P-wave line
- 4. Follow the paper down and read the chart to determine the distance

Complete page 8 and 9 in notes packet

Locating the Epicenter

A minimum of 3 seismic stations are needed to locate an earthquake epicenter.

- One seismic station gives you **distance** only, and **not direction**
- Two stations may give you 2 possible locations where the two circles intersect
- When <u>3</u> stations are used, the epicenter is where they all <u>intersect</u>

- a. Which seismic station is closest to the epicenter? <u>A</u>
 How can you tell by the diagram?
 The smallest circle
- b. Which seismic station is farthest away from the epicenter?
 B
 How can you tell by the diagram?

The largest circle

c. Describe where the epicenter is. Where all 3 circles

intersect

d. Place an "X" at the epicenter.

Shadow Zone Diagram

As P-waves and S-waves pass through different layers within Earth's interior they are **refracted (bent)** due to differences in **density**

Some areas on Earth's surface only receive P-waves, because S-waves can only travel through <u>solids</u> and the <u>outer core</u> is liquid.

Other sections on Earth's surface receive no earthquake waves because of the way the waves **bend** within the Earth

These areas are known as the **shadow zone**

Complete Epicenter Practice, Lab, then pages 11 – 15 in notes packet

Pangaea: Supercontinent – one large land mass

Copyright © 2002 by Tasa Graphic Arts, Inc.

В.

Copyright © 2002 by Tasa Graphic Arts, Inc.

Copyright © 2002 by Tasa Graphic Arts, Inc.

Copyright © 2002 by Tasa Graphic Arts, Inc.

Movement of Plates

Convection currents in the asthenosphere move the plates

Convection currents Currents that drive plate movement due to differences in density

Rising currents - Hot, less dense rock rises

- Causes plates to move apart

- Divergent plate boundaries

Falling currents - Cold, more dense rocks sink

- Causes plates to come together

- Convergent plate boundaries

	Continental Crust	Oceanic Crust
Composition	Granite	Basalt
Density	2.7 g/cm3	3.0 g/cm3
Thickness	Thicker	Thinner

(Not drawn to scale)

16

Plate Boundaries

When plates move they can:

Separate
 Collide
 Slide by each other

*Earthquakes, Volcanoes, and Mountain Building occur on Plate Boundaries

Tectonic Plates

Fill in page 17 in notes

Copyright © 2002 by Tasa Graphic Arts, Inc.

Volcanic island arc

Observe an animation of volcanism at a subduction zone.

 http://www.classzone.com/books/earth_scien ce/terc/content/visualizations/es0902/es0902
page01.cfm?chapter_no=09 Observe animations of processes that occur along plate boundaries.

 http://www.classzone.com/books/earth_scien ce/terc/content/visualizations/es0804/es0804
page01.cfm?chapter_no=08

Evidence that pates are moving apart:

- Ocean floor is generally younger than the continents.

- Rocks continually form at Mid-ocean ridges

- Magnetic reversal

- Some igneous rocks contain minerals

that are magnetic.

Reversed Polarity

- Bands of igneous rocks on the ocean

floor show that Earth's magnetic

orientation has been reversed in the past.

MORE Evidence for crustal movement:

Fact(s) to memorize: 21 & 22

Bench Marks - Locations labeled with the exact elevation

- Scientists can determine change in elevation

Uplift of fossils

Subsidence of fossils

MORE Evidence for crustal movement:

Fact(s) to memorize: 21 & 22

Bench Marks - Locations labeled with the exact elevation

- Scientists can determine change in elevation

Uplift of fossils- Fish and marine fossils found onmountain tops

Subsidence of fossils - Shallow water fish buried deep in the ocean floor

Looking at Rock Strata

A place where magma is coming up through a weak spot in Earth's crust

Forms a volcanic island chain, island over the hotspot is the youngest

Ex: Hawaii

Observe an animation of volcanic islands forming over a hot spot.

 http://www.classzone.com/books/earth_scien ce/terc/content/visualizations/es0904/es0904
page01.cfm?chapter_no=09

 https://www.youtube.com/watch?v=HKZxElEr t-l&t=1142s